Nonequilibrium GW approach to quantum transport in nano-scale contacts.

نویسندگان

  • Kristian S Thygesen
  • Angel Rubio
چکیده

Correlation effects within the GW approximation have been incorporated into the Keldysh nonequilibrium transport formalism. We show that GW describes the Kondo effect and the zero-temperature transport properties of the Anderson model fairly well. Combining the GW scheme with density functional theory and a Wannier function basis set, we illustrate the impact of correlations by computing the I-V characteristics of a hydrogen molecule between two Pt chains. Our results indicate that self-consistency is fundamental for the calculated currents, but that it tends to wash out satellite structures in the spectral function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conserving GW scheme for nonequilibrium quantum transport in molecular contacts

Kristian S. Thygesen1 and Angel Rubio2 1Center for Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark 2European Theoretical Spectroscopy Facility (ETSF), Departamento de Física de Materiales, Edificio Korta, Universidad del País Vasco, Centro Mixto CSIC-UPV, and Donostia International Physics Center (DIPC), Avenida de Tolos...

متن کامل

Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths

The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage.  The considered systems were composed from one-layer graphene sheets differing w...

متن کامل

Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths

The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage.  The considered systems were composed from one-layer graphene sheets differing w...

متن کامل

Effect of asymmetric quantum dot rings in electron transport through a quantum wire

The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...

متن کامل

Effect of asymmetric quantum dot rings in electron transport through a quantum wire

The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 126 9  شماره 

صفحات  -

تاریخ انتشار 2007